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Parameterization and Estimation of
Surrogate Critical Surface Concentration in
Lithium-Ion Batteries

Abstract: In this paper a surrogate electrochemical lithium-ion
battery model, presented and discussed in (Di Domenico et al. - CCA,
2008) and (Di Domenico et al. - JDSMC, 2008), is parameterized and
validated through experimental data by a 10 cell 37 V 6.8 Ah li-
ion battery pack. Following past results (Zhang et al., 2000; Smith,
2010), the model is based on an approximate relationship between
the electrode-averaged Butler-Volmer current and the solid-electrolyte
interface concentration of a surrogate single particle for each cell
electrode. Equally-spaced radially-discretized diffusion dynamics of the
surrogate single particle for the positive electrode are then used to
emulate the lithium concentration evolution in the cell. The surface
concentration of the surrogate single particle, defined as surrogate
Critical Surface Concentration (sCSC) is then used to predict the cell
terminal voltage. The resulting model is as compact as an equivalent-
circuit model but its underpinnings are lumped lithium-ion diffusion
dynamics. A few parameters of the lumped lithium concentration
dynamics are tuned using an iterative optimization procedure with
continuous and pulsed current profiles. The single particle lithium
concentration profile and the surface concentration are then estimated
using a 4th order Extended Kalman Filter (EKF) and the voltage
predictions are compared with data.

Keywords: Lithium-ion Battery; State of Charge; Kalman Filter.

1 Introduction

Lithium-ion batteries play an important role in the area of the second generation
Hybrid Electric Vehicles (HEV) design as high-rate transient power source or in
electronic devices where battery is the primary energy source. When the batteries
operate in a relative limited and controlled range of state of charge, high efficiency,
slow aging and no damaging are expected. As a consequence, the estimation of
the State Of Charge (SOC), the power availability, and the remaining capacity are
critical tasks for the battery management.

It is important to note that the SOC cannot be directly measured and the SOC
definition itself varies among different works, in accordance with different points
of view or different conventions. This is due not only to the instrinsic difficulty of
the estimation but also to the high number of parameters and operating conditions
from which the remaining charge depends. This is clear by simply looking at the
discharge curves provided in the cell data−sheet by battery manufacturers, where
it is possible to see how different discharge rates give different amount of energy
in terms of maximum disposable amperehours.

Copyright c⃝ 2009 Inderscience Enterprises Ltd.
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Several techniques have been proposed for SOC estimation, like model-based
observers (Barbarisi et al., 2006; Plett, 2004; Codeca et al., 2008; Smith et al.
- CCA, 2008; Smith et al. - TCST, 2010) or black-box methods (Salkind et al.,
1999) or stochastic approaches (Chiasserini et al., 2000). To our knowledge, most of
the model-based observers, which have been experimentally verified, are based on
equivalent circuit models. The overall voltage prediction accuracy reached is about
2% (Pop et al. - JES, 2006; Plett, 2004). SOC estimation based on electrochemical
models is investigated in (Smith et al. - CCA, 2008; Doyle et al., 1993; De Vidts
et al., 1995; Weidner et al., 1994), although its validation is typicaly performed
against a more detailed model rather than experimental data. The electrochemical
models are generally preferred to equivalent circuit representation (Chen et al.,
2006), or to other kinds of simplified models, thanks to their ability to relate to the
physical parameters and state limitations, whenever the battery suffers very often
the stress of very high transient loads such as in automotive applications (Smith
et al. - JPS, 2006). Unfortunately, electrochemical model are of high order and too
complex to be tuned or used in a real-time on-board estimator. As a consequence
several approximations are typically introduced (Barbarisi et al., 2006; Paxton
et al., 1997; Smith et al. - JDSMC, 2008).

The aim of this paper is to validate the current/voltage behavior of a previously
discussed model (see (Di Domenico et al. - CCA, 2008) and (Di Domenico et al.
- JDSMC, 2008)), versus experimental data collected from a 6.8 Ah, 10 cells li-
ion battery pack and show the performance of the model based Extended Kalman
Filter (EKF) in voltage prediction based on solid critical surface concentration
(CSC) values. While generally the standard SOC represents the battery remaining
energy, the estimated CSC value represents the amount of energy that is available
in the battery to be used instantaneously. This value converges to the classic SOC
estimation after a rest, so it is useful even as standard charge indicator. The model
is based on an approximated relationship between (i) the Butler-Volmer current
and the solid concentration at the interface with the electrolyte and (ii) the battery
current and voltage. In this work, the procedure used to identify the averaged
model parameters in order to match the model output with the experimental data
is shown in detail. The tuned model is then validated using additional battery
voltage and current measurements during both charge and discharge experiments.
Finally the EKF parameters are adjusted in order to estimate the battery averaged
solid surface concentration and, as consequence, the battery CSC. The paper is
organized as follows. First, the electrochemical model is briefly described. Then
the experimental set-up and the battery parameters identification procedure are
illustrated. Finally the EKF features and CSC estimation are presented along with
a robustness analysis.

2 Electrochemical battery model

The lithium-ion battery is composed of three main parts: the negative electrode,
the separator and the positive electrode. Each battery electrode consists of a
solid matrix of porous material filled with lithium ions, immersed inside an
electrolyte solution, whereas the separator is just the electrolyte solution that
acts as an electronic insulator, conducting only the lithium ions. In particular,
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Figure 1 The battery electrodes typically extend for meters in order to have the
largest possible collector area but are wound forming the prismatic or puch
cells (upper). Schematic representation of the electrode thickness across the
x-dimension and the surrogate single particle approximation (bottom).

the negative electrode, or anode, is generally composed of a mixture of carbon
(i.e. LiC6), while the electrolyte is a lithium salt in an organic solvent, such
as LiPF6 in a solution of EC:DMC. The positive electrode, or cathode, is a
lithium-metal oxide and its composition can vary through different chemistries
(i.e. LiCoO2 or LiMn2O4) with different properties in terms of energy density,
peak power, maximum discharge current or temperature rating. Batteries are
generally composed from two long stripes of metallic collectors, coated with the
respective active materials and wetted with the electrolyte solution. Between the
electrodes, is present a special separator membrane that acts like a surge switch,
preventing internal short, caused by the formation of dendrites in the collectors
due to chemical reaction occurring when high (or conversely low) concentrations
of lithium ions arise into the electrodes. The presence of this membrane offer a
small but not irrelevant resistance. Figure 1 shows a section of the battery film
across the electrodes. The green spheres represent the lithium particles trapped
into the active material of anode or cathode, with the respective thickness and the
length between the metallic collectors. Under the presence of a load current, the
particles of lithium trapped into the solid active material at the negative electrode
start to diffuse toward the electrolyte-solid interface where a chemical reaction
occurs (oxidation), splitting lithium in ions and electrons. The potential difference
causes the transferring of the lithium ions through the solution while the electrons
are forced to move through the collector because, as said before, the electrolyte
solution acts like an electronic insulator (Smith et al. - JPS, 2006). The traveling
lithium ions arrived at the interface with solid material in the cathode react
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again with the electrons coming from positive collector and, thanks to the inverse
chemical reaction (reduction), intercalating into the metal oxide solid material
as new lithium particles. The whole phenomenon is commonly called rocking-
chair, as the lithium material flows back and forth through the battery (Tarascon
et al., 1991), ideally in a fully reversible process. The lithium transportation
and intercalation/diffusion process are the main aspects covered into the battery
mathematical model.

It’s generally accepted that a microscopic description of the battery is
intractable, due to the complexity of the phenomena at the interfaces (Wang
et al. - Part 1, 1998). So, in order to mathematically model the battery, both
macroscopic and microscopic modeling approximations have to be considered.

Focusing in the galvanostatic operation, the input of the model is the battery
current I, with positive value during discharge, while the output is the battery
voltage V . The battery system assuming dominant or limiting solid-diffusion
phenomena can be described with three quantities, i.e. solid concentrations (cs)
and solid and electrolyte potentials (ϕs, ϕe) (see (Smith et al. - JPS, 2006;
Gu et al., 2000)) as function of the Butler-Volmer reaction current density jLi

describing the current distribution along the cell length.

∂

∂x

(
κeff−→∇xϕe + κeff

D

−→
∇x ln ce

)
= −jLi (1)

∂

∂x

(
σeff−→∇xϕs

)
= jLi (2)

∂cs
∂t

=
−→∇r(Ds

−→∇cs) (3)

with electrolyte concentrations (ce) fixed and the current density defined as∫
δn

jLi
n (x)dx =

∫
δp

jLi
p (x)dx =

I

A
. (4)

The equations (1) to (3) have initial conditions reflecting physical and chemical
constraints or based on the input current I and are are all coupled by the Butler-
Volmer current density equation

jLi(x) = asj0

[
exp

(
αaF

RT
η

)
− exp

(
− αcF

RT
η

)]
. (5)

The overpotential η (i.e. the extra energy needed to force the electrode to react at
a required rate or equivalently to produce the required current density) is defined
as

η = ϕs − ϕe − U(cse) (6)

where U(cse) is the open circuit potential (OCP), i.e. the potential at which
there is no current flowing through the battery, which is function of the lithium
concentration inside each electrode. It is possible to find an empirical correlation
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function between the solid concentrations and the open circuit potential as will be
shown later in this paper. Finally, the coefficient j0 is calculated as

j0 = k0(ce)
αa(cs,max − cse)

αa(cse)
αc . (7)

Finally, the cell potential is computed as

V = ϕs(x = L)− ϕs(x = 0)− Rf

A
I (8)

where Rf is the film resistance on the electrodes surface and A is the collectors
area. More details on the model and its parameters can be found in (Di Domenico
et al. - CCA, 2008; Smith et al. - JPS, 2006; Wang et al. - Part 2, 1998).

Note here that the electrolyte concentration ce has been neglected because, in
general, it has a small gradient even under high current transients(Smith et al.
- JPS, 2006). A lumped form of the lithium-ion diffusion in the electrolyte is
modeled in (Schmidt et al., 2010) although Smith et al. in (Smith et al. - TCST,
2010) report that the associated eigenvalue is in the middle of the range of
eigenvalues for the solid diffusion dynamics.

To further simplify the model, the solid concentration distribution along the
electrode is neglected and (4) is evaluated using an average value for the current
densities. An averaged solution of (4)∫ δn,p

0

jLi
n,p(x)dx =

I

A
= j̄Li

n,pδn,p (9)

ignores the spatial dependence from the Butler-Volmer equation. Because the
initial conditions for the diffusion equation (3) of each spherical particle are based
on the local (x-direction) value of the current density, the first effect of the
averaging procedure is the possibility of describing the diffusion sub-model with
a single representative solid material particle for the anode and another one for
the cathode. The second effect is that equation (2) can be neglected, because its
solution is now with no physical meaning. Indeed, equation (2) represents the
differential expression of the Ohm’s Law. Once the JLi term is no longer space
varying, the differential equation reverts itself to the standard V = RI form and
therefore there is no more need of solving it.

Because the chemical reactions are driven by the lithium-ion concentration
at the electrolyte interface (i.e. cse(x) value) rather than the average bulk
concentration, the value of the former concentration is critical in respect to the
instantaneous cell conditions and its voltage output. The surface concentration
resulting from the averaging process is then called critical surface concentration
c̄sc and all the model equations will be based on this particular value. Although
these simplifications result in a heavy loss of information, they can be useful in
control and estimation applications as we demonstrate next. With the previous
assumptions made, it is possible to find a solution for the other equations allowing
the simulation of the cell model.

The partial differential equation (3), describes the solid phase concentration
along the radius of the active particle, but, as said above, the macroscopic model
requires only the concentration at the electrolyte interface. Because it is still in
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form of a partial differential equation, in order to solve this equation using Matlab-
Simulink it is convenient to express the PDE into an ordinary set of ODEs, using
finite differences method along the particle radius r-dimension.

∂cs
∂t

=
−→
∇r(Ds

−→
∇cs) = Ds

(
∂2cs
∂r2

+
2∂cs
r∂r

)
(10)

Dividing the sphere radius in Mr − 1 intervals, it is possible to approximate for
each interval the first and the second derivative with the finite difference, so that
the PDE of a generic particle becomes

dcsq
dt

=
Ds

∆2
r

[
cs(q+1)

++cs(q−1)
− 2csq

]
+

[
∆r

2rq

(
cs(q+1)

− cs(q−1)

)]
(11)

where q = 1, ...,Mr − 1 and rq = q∆r. Substituting rq in (11)

dcsq
dt

=
Ds

∆2
r

[(
q − 1

q

)
cs(q−1)

− 2csq +

(
q + 1

q

)
cs(q+1)

]
. (12)

The boundary condition can be rewritten linearly, approximating center and
border concentration value as follows

cs0 = cs1 ,

cse = cs(Mr−1)
−∆r

jLi

FasDs

(13)

With these approximations it is possible to express the resulting Mr − 1 ODEs in
a classic state space formulation as follows

ċs = Acs +BjLi.
cse = cs(Mr−1)

+DjLi (14)

where matrices A, B and D are

A = α1



−2 2 0 0 · · · · · · 0

1
2 −2 3

2 0
. . .

. . .
...

0 2
3 −2 4

3 0
. . .

...

0 0
. . .

. . .
. . .

. . .
...

...
...

. . . 0 Mr−3
Mr−2 −2 Mr−1

Mr−2

0 0 . . . 0 0 Mr−2
Mr−1 −2


,

B = α2


0
...
0
Mr

Mr−1

 ,D = −α2

α1

(15)

with α1 = Ds

∆2
r
, α2 = 1

FasDs
from (12) and (13).
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The number of discretization points Mr has to be chosen based on the particle
size. For very small particles the diffusion phenomenon is not relevant and Mr can
be chosen between 1÷ 5. Instead, for bigger particles (i.e. with radius r > 5 µm)
a choice of Mr between 15÷ 30 leads to a good approximation of particle internal
diffusion. In this paper we choose Mr = 20. Because of the second assumption
made, the solutions of the single particle diffusion equations in the averaged model
become respectively cs = c̄s and csc = c̄se. This solution holds both for positive
and negative active materials, with the respective parameters and current density
input.

Two sets of ODEs, one for the anode and one for the cathode are then obtained.
The positive and negative electrode dynamical systems differ at the constant
values and at the input sign. In accordance with past work it is convenient to
express the concentration values in term of normalized concentration, also know
as concentration stoichiometry,

θx =
cse,x

cse,max,x
, (16)

where cse,max,x is the maximum concentration of lithium into each electrodes
and x = p, n for the positive and negative electrode. Note that the concentration
stoichiometry above is based on the solid-electrolyte surface lithium ion
concentration, which apart from directly influencing the terminal voltage, it
typically represents the extremum value of lithium concentration in the particle,
hence called critical surface concentration, (CSC). This definition departs
from the traditional bulk concentration stoichiometry (i.e. the stoichiometry of the
bulk solid concentration based on the average csi) defined as θb,x =

cb,x
cse,max,x

, again

with x = p, n for positive and negative electrode. The battery voltage (8), using
(6) and using the electrode-average values at the anode and the cathode, can be
rewritten as

V = (η̄p − η̄n) +
(
ϕ̄e,p − ϕ̄e,n

)
+ (Up(θp)− Un(θn))−

Rf

A
I. (17)

Using the microscopic current average values and imposing the boundary
conditions and the continuity at the interfaces, a solution of (1) can be found. As
shown in (Di Domenico et al. - CCA, 2008) and (Di Domenico et al. - JDSMC,
2008), the approximate solution for the electrolyte potential difference at the
interface with the collectors leads to

ϕ̄e,p − ϕ̄e,n = ϕe(L)− ϕe(0) = (18)

= − I

2Akeff
(δn + 2δsep + δp) .

Each of the individual voltage submodels in (17) can be expressed as a function
of the surface solid concentration and the input current as following. Using (5) it
is possible to express the overpotentials difference as a function of average current
densities and solid concentrations as follows

η̄p − η̄n =
RT

αaF
ln

ξp +
√
ξ2p + 1

ξn +
√

ξ2n + 1
= Vη(θp,n, I) (19)
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where

ξp =
j̄Li
p

2asj0p
and ξn =

j̄Li
n

2asj0n
. (20)

The battery voltage (17) can now be rewritten as a function of current demand
and average solid concentration

V (t) = Vη(θp,n, I) + (Up(θp)− Un(θn))−
Kr

A
I. (21)

where Kr = 1
2κeff (δn + 2δsep + δp) +Rf is a term that takes into account both

internal and collector film resistances.

3 Experimental Set-Up

The battery utilized in the experimental set-up is a 6.8 Ah polymer lithium-
ion battery from SAFT composed of a series of ten MP176065 cells with a
nominal pack voltage of 37 V. The battery pack is equipped with a protection
circuit limiting the current demand to 5 A by an internal amperometric fuse.
The experiments have been conducted with lower current demands. In order to
collect the battery experimental data during the charge and the discharge, a series
of electronic devices have been utilized. The experimental set-up is composed of
an electronic load Prodigit-3600, a DC voltage generator and a voltage-current
sensor coupled to a 16-bit ADC from National Instruments. Figure 2 shows the
connection schematics between the battery, load and generator, coupled with the
voltage/current sensor. The DC voltage generator utilized for the battery charge is
a 42 V - 20 A device and was charging the battery according to the manufacturer
specifications taking into account safety concerns and cell balancing. Finally the
data has been collected using a 16-bit, 32 channels A/D converter from National
Instruments that able to sample the current and voltage signals at a maximum rate
of 1 MHz. The sampling time has been chosen in a range from 0.1 s to 0.025 s in
order to avoid oversampling during slow rate experiments or conversely undesired
aliasing during faster load dynamics.

4 Model Identification Procedure

The surrogate single particle model depends on fewer parameters with respect to
the electrode-distributed one, but this number is still too high to identify all of
them as unknowns. Some of the parameters capture geometrical features and some
chemical features which can be split into physical and design specific (i.e depend
on the particular cell design). In order to reduce the number of parameters to be
identified and maintain a good degree of accuracy for model fitting, some values
have been taken from literature (Smith et al. - JPS, 2006) and some from the cell
manufacturer.

The parameters to identify are the maximum positive and negative solid
concentration cs,max,p and cs,max,n, the positive and negative solid phase diffusion
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Figure 2 Experimental set-up: (A) Electronic load, (B) Voltage generator, (C) ADC,
(D) Battery and (E) Current and voltage sensor.

coefficient Ds,p and Ds,n, the positive and negative active surface area per
electrode as,p and as,n, the electrode surface A, the total cell film resistance Kr and
the current coefficient k0 for a total of nine parameters. In addition to these nine
parameters it is necessary to know the initial solid concentration values in both
electrodes. The discharge and the charge experiments have been conducted with
the battery respectively fully charged and fully discharged in order to reduce the
influence of an erroneous estimate of the initial concentration. An initial estimate
for the fully charged stoichiometry is taken from (Doyle et al., 1993). These values
have been adopted and then refined to fit the experimental data.

In order to obtain the correlation between solid concentration inside the
electrodes and their open circuit potential, the following procedure has been
adopted. From the battery data sheet it is possible to know that the negative
electrode active material is composed of graphite (LiC6) so the empirical
correlation found in (Fuller et al. - I, 1994) has been utilized, while the positive
consists of an unknown mixture of LiCoO2 with other metal oxides. Since the
positive OCP dominates the terminal open circuit voltage, an empirical correlation
has been established for Up(θp) by discharging the cell at a very low constant rate
and fitting the difference between observed data and model voltage output.

Figure 3 shows the empirical correlations found for both electrodes. The other
battery constants are shown in Table 2. The parameter identification procedure
has been designed as follows. A set of experimental data has been chosen for the
parametric identification routine, comprised of charge and discharge process, with
constant and pulse current profile, in order to capture both slow and fast dynamics
of the battery behavior. In detail, a set of four charges (1 A, 2 A and 3 A at
constant current and 4 A with pulse current demand) and four discharges (2 A,
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Figure 3 Empirical open circuit potential correlations for negative and positive
electrodes.

3.5 A and 5 A at constant current and 6 A pulse current demand) have been
utilized for parameter identification. Note here that the identification procedure on
a single profile leads to a very good fit, but the obtained parameters are tied to the
specific experiment and do not fit well with other experiments. In order to avoid
this local minimum problems and obtain a set of parameters matching different
operational points, a global identification procedure has been conducted utilizing
all the selected data at the same time. The identification procedure consists of
finding the minimum of the following index cost:

min
par

J =
∑
i

∫
(VM,i(Ii, par)− VREC,i)

2 (22)

where VREC,i is the i-th experimental battery voltage measurement recorded
corresponding to the i-th current demand profile Ii, VM,i(Ii, par) is the predicted
voltage and par is the vector of parameters to identify. In order to obtain a guess
starting point for the parameter set, a rough estimation of their values has been
obtained utilizing information from literature and battery nominal performance.
The minimization procedure has been conducted using Matlab/Simulink, with
a gradient free function minimization algorithm specifically suited for non-linear
scalar function. The single experiment maximum error tolerance has been fixed
around ±0.5 V corresponding to a maximum error of ±0.05 V per cell. In addition
it is necessary to fit the Open Circuit Potential (OCP) correlation function for
the positive electrode, because it is related to the specific cell properties. The
OCP is the potential at which there is no current flowing into the battery.
For each electrode its value can be related with the solid surface concentration
through an empirical correlation function, representative of chemical, geometrical
and physical properties of the electrode construction. In literature it is possible
to find expression of that correlation for cathode material (LiCoO2 or LiMnO4)
or anode (LiC6), but those functions appear to be fitting only for their original



UNCLASSIFIED 11

battery measurements (Doyle et al., 1996; Fuller et al. - II, 1994; Doyle et al.,
2003)

So, it is necessary to fit a custom correlation function for our MP176065 cells
in order to reproduce the battery voltage behavior, especially for low SOC values.
From battery manufacturer specification it is possible to know that the anode
is composed of graphite (LiC6), while the cathode is a mixture of LiCo02 and
other metal oxides. The negative OCP value is very small and slowly varying with
negative solid concentration, so instead of fitting a custom function we used a
correlation found in literature (Fuller et al. - I, 1994). Instead, fitting the positive
OCP function is a part of the identification process.

Because the cathode material is mainly composed of LiCoO2 and in accord
with data collected, the positive correlation function is expected to be similar to
the one found in literature (Doyle et al., 2003), especially in the initial phase of a
discharge, when positive stoichiometry is low and porous structure is more likely
to accept new lithium ions insertion. For this motivation the fitting procedure has
been modeled as follows:

A) - The initial parameter values for the model are taken from prior work
and the positive OCP used is based on Doyle et al. formula. The identification
procedure is run, using current/voltage profiles truncated before (or after during a
charge) the end of discharge, as shown in Figure 4-A.

B) - The obtained OCP is compared with experimental data collected during
a 0.1 C charge and discharge (i.e. 0.68 A). For such very low current demand, the
battery voltage is approximately equal to the open circuit voltage as is shown in
Figure 4-B. The battery specific correlation function is computed as follows:

Ûp = VOCV − VMOD + UD
p (23)

where Ûp is the estimated OCP correlation, VOCV is the collected battery open
circuit voltage, VMOD is the model output computed as in (21), and UD

p is the
positive OCP computed as in (Doyle et al., 2003)

C) - The newly found OCP correlation is substituted to the old one. Figure
4-C shows the new found correlation confronted with the old one.

D) - The identification procedure is run again, but without cropping the data
set after the end of discharge (or conversely the beginning of charge). Figure 4-D
shows an identified voltage profile with the new found OCP function.

E) - If the step D ends with a voltage error smaller than the fixed threshold
(0.5 V in this case), the identification procedure ends. Otherwise start again from
step A, using the identified parameter set but substituting UD

p with the new found
function in order to refine the result during step B. The minimization function
is then kept running until all individual errors are under fixed threshold and the
voltage profile is correctly followed by the model.

5 Simulation Results

After the identification procedure the reduced order model exhibits a good voltage
prediction, with an approximate mean error of 0.2 V and a maximum error under
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Figure 4 Open Circuit Potential identification procedure.

the chosen threshold. The resulting parameters values are listed in Table 1. Figure
5 shows the obtained voltage prediction under charge and discharge at different
rates, during the model identification process. The solid lines represent the model
output, while the marks represent experimental data. The simulations show a
good agreement under all conditions and particularly good results away from the
initiation and the termination of the experiments. During the initiation and the
termination phase of its experiments, the internal battery protection circuitry is
activated, hence it cause nonlinear phenomena which are not modeled.

Figure 6 shows the identification procedure results on a pulse operation
discharge. For visualization reason, only the first 150 s of the simulation are shown,
but results are representative of the entire test. The fast transients are followed
without errors, showing good dynamic performances.

Finally the model has been validated on a different data set, not utilized for
identification purpose. The current demand profile used for validation purpose is
a series of ten Hybrid Pulse Power Characterization profiles (HPPC), as indicated
in the FreedomCar manual (US DoE, 2003). Each HPPC profile lasts 60 s with
reference current demand increases of 0.5 A (starting from 0.5 A up to 5.5 A), and
is followed by 15min relaxation period. Figure 7 shows the complete simulation,
while Figure 8 zoom only in a selection of the signal, in order to best illustrate
the result. The battery measurement has been under sampled in order to improve
readability of the figure.
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Figure 6 Battery measurement versus battery model during identification test
experiment, under pulse current discharge.
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Figure 8 Detail on selections of validation test experiment.

6 Kalman filter State of Charge estimation

The physical quantity related to the battery state of charge is the solid
concentration at the electrodes. A Kalman Filter for the on-line SOC estimation
based on the electrochemical model is presented in (Di Domenico et al. - CCA,
2008) and (Di Domenico et al. - JDSMC, 2008), where a preliminary observability
analysis is also performed.

6.1 System Observability

In order to study the system observability it is necessary to transform the model
in a linear state-space formulation from the current input I through the voltage
output V .

The average dynamical system (14) describes the diffusion effects into two
solid material particles, one for the cathode and one for the anode, and allows
to compute the solid concentration at the spheres radius, which represents an
average value of the solid concentration throughout the electrodes. Defining the
state vector as

x = (cs,n1, cs,n2, ..., cs,nMr−1
, cs,p1, cs,p2, ..., cs,pMr−1

) (24)

where cs,ni and cs,pi, with i ∈ 1, 2, ...,Mr−1, refer to the concentration values
inside respectively the negative and the positive representative particles for each
electrode. The linear system of the single-particle two-electrode battery is then

ẋ = Ax(t) +Bu(t) (25)

where

A =

(
An 0
0 Ap

)
(26)
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with An and Ap obtained from (15) using respectively anode and cathode
constants,

B =

(
Bn 0
0 Bp

)
(27)

with Bn and Bp again from (15) and

u = (j̄Li
n , j̄Li

p )T . (28)

The system matrices highlight that the electrode dynamics are decoupled due
to the averaging of the current density (while in the original equation set are
connected through the spatial varying potentials and the current density). The
final battery voltage is then calculated as

y = V = f(x, u). (29)

Because the function f is non-linear it is necessary to compute the C matrix by
linearizing the output y(t) around operating point (x̄, ū) as follows

y ≈ f(x̄, ū) +
∂f

∂x

∣∣∣∣
x=x̄

(x− x̄) +
∂f

∂u

∣∣∣∣
u=ū

(u− ū) (30)

which leads to

C =
∂f

∂x

∣∣∣∣
x=x̄

. (31)

Because of the weak dependence of j0 on the solid concentration in (7), it is
possible to express

C =

(
0,− ∂Un

∂cs,nMr−1

, 0,
∂Up

∂cs,pMr−1

)
. (32)

The observability matrix O is then obtained according to

OT = [CT (CA)T (CA2)T ...(CAM−2)T ]. (33)

Even if O is a full rank matrix, it has to be noted that because Un is a weak
function of cse,n (its derivative is almost zero) it is possible that in some operating
points O is approximately singular. In addition, the voltage expression is an
approximated solution of (8) and it is based on the differences between positive
and negative quantities, leading to the observability of their differences more
than the individual absolute electrode behavior. So the system that includes both
positive and negative electrode concentration states is weakly observable.
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Figure 9 Open circuit potential derivative comparison. Solid blue line is the negative
and red dashed line is the positive.

6.2 Minimal Realization and Kalman Filter

The poor observability limitation can be mitigated by establishing a relation
between the anode and the cathode average solid concentrations which can be used
for the estimation of the negative electrode concentration based on the positive
electrode, which can then be observable from the output cell voltage (Di Domenico
et al. - CCA, 2008).

Based on manufacturer specification it is possible to define two values for
normalized concentration (for both negative and positive values) defined as
θp,n,100% and θp,n,0% corresponding respectively to the stoichiometry of a fully
charged and a fully discharged battery. It is important to note that θn,100%
(or equivalently θp,0%) is not equal to 1, because a portion of the lithium is
permanently trapped into the anode after the very first charge of the cell and does
not flow back to the cathode and viceversa. Common values for θp,0% are 0.7− 0.9
depending on cell characteristics and specification about charging and discharging
maximum and minimum voltages.

First, let us define the state of charge of the battery immediately available,
or critical surface charge, with a good approximation, as linearly varying with θ
between the two reference values at 0% and 100%

CSC(t) =
θx − θ0%x

θ100%x − θ0%x
. (34)

with x = p, n for the positive and negative electrode. Because the positive open
circuit potential function has a higher derivative in respect to the negative, it
is best to choose the positive electrode as reference and compute the negative
concentration values from the positive ones. With this choice the observability of
the system is stronger because the O matrix is less likely to lose rank. Figure
9 shows a comparison between the negative and the positive derivative of the
open circuit correlation function. The average difference is around one order of
magnitude, with a great value of the positive derivative near to the full charge
or the full discharge. Nevertheless, for θp = 0.65 (i.e. around 30% SOC) even the
positive derivative has a very low value. This reflects the voltage behavior being
almost flat for the considered cell around the specified SOC range, and leads to
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a weak observability. Finally, equation (34) allows the computation of negative
stoichiometry from positive using (34) as

θn =
(
θp − θ0%p

)[θ100%n − θ0%n
θ100%p − θ0%p

]
+ θ0%n (35)

Hence, the state vector can be reduced to

xr = (c̄s,p1, c̄s,p2, ....., c̄s,p(Mr−1))
T , (36)

and the dynamical system becomes

ẋr = Apxr(t) +Bpu(t), (37)

For a linear state-space formulation, the linearized battery voltage results in an
output matrix C = ∂V/∂xr which is a row matrix with zeros in its first Mr − 2
elements and the last non-zero term equal to

∂V

∂c̄s,p(Mr−1)
=

∂Up

∂c̄s,p(Mr−1)
− ∂Un

∂c̄se,n

∂c̄se,n
∂c̄s,p(Mr−1)

. (38)

This guarantees a strongly local observability ∀c̄se,p ̸= 0 (Di Domenico et al. -
CCA, 2008; Hermann et al., 1977).

The Kalman filter can now be designed, according to

˙̂x = Apx̂+Bu+Ke(y − ŷ) ŷ = V (x̂, u) (39)

where x̂ and ŷ are respectively the estimate state and output, V is the output
nonlinear function in (21), Ap, Bp are the matrices describing the dynamical
system introduced by (37), C defined using (38) and Ke is the Kalman gain,
obtained as follows

Ke = PCR−1
u (40)

where P is the solution of the Riccati equation

Ṗ = ApP + PAT
p − PCR−1

u CTP +Rx P (0) = P0, (41)

and Rx and Ru are weight matrices appropriately tuned in order to minimize
the quadratic error on battery voltage. A Matlab optimization procedure returned
Rx = 10× I (where I is the identity matrix) and Ru = 12. The weak observability
discussed above is reflected in a low gain for the Kalman filter in (40) due to the
low value of C around 0.3% SOC. This problem can be mitigated choosing an
higher value of Ru in this particular region. This leads to a better estimation at
the cost of a slower convergence in case of high input dynamics.
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Figure 10 Constant current discharge 3.5 A (0.5 C). Top plot shows the battery
voltage output compared with the reduced order model (open loop) and the
Kalman filter (closed loop feedback). The bottom plot shows the voltage error
committed by the model and by the Kalman filter.

7 Experimental results

In this section the simulation results compared to the experimental data are
reported, in order to demonstrate the performance of the Kalman filter. The
experiments are similar to the ones used validate the model. The order of the
Kalman filter has been chosen equal to 4, in order to ensure a good compromise
between accuracy and a realization with a small number of states. Figure 10 shows
the filter performance during a constant current discharge of 3.5 A (0.5 C). As is
possible to see in the bottom plot, the reduced order model voltage error is lower
than 0.5 V almost over the entire discharge process, with a correct initialization
of the initial solid concentrations into the electrodes. Nevertheless in the final
part, even a very small error in the concentration value leads to a high error in
the voltage output, because of the steep behavior of the end-of-discharge voltage
characteristic. This could be due to small error in the initial concentration value,
differences between the exact battery parameters and the identified parameters,
drift of the open loop simulation due to unmodeled phenomena and so on. The
Kalman filter instead, thanks to the closed loop feedback regulation is able to
follow the battery voltage output with a smaller error along all the discharge and
in particular in the final part where the system observability is high. The detail in
the top plot highlights the noise rejection property of the filter, that also smooths
the voltage noisy signal without losing the real signal dynamics. Figures 11 and
12 show the performances of the Kalman Filter during a pulse discharge compared
to both the experimental data from the battery and the open loop model output.
The current profile is similar to Figure 6 profile with piecewise constant current
demands alternating 10 s rest to 6 A (0.9 C) demand for 5 s. The top plot of Figure
11 shows the comparison between the battery voltage during the pulse and the
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Figure 11 Pulse discharge experiment, beginning of the discharge. The solid blue line
with circle marker is the battery measured voltage output, the green dashed
line is the EKF voltage output and the red line with the x marker is the open
loop model voltage output. The bottom plot shows the error by the EKF and
the open loop model.
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Figure 12 Pulse discharge experiment, close to the end of the discharge. The solid
blue line with circle marker is the battery measured voltage output, the green
dashed line is the EKF voltage output and the red line with the x marker is
the open loop model voltage output. The bottom plot shows the error
committed by the EKF and the open loop model.
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Kalman filter output along with the open loop model. It it possible to appreciate
the higher degree of accuracy of the Kalman filter in respect to the model, even if
the latter has been correctly initialized. On the contrary, the convergence property
of the Kalman filter eliminates the need of a correct initialization. In fact, the
initial concentration values for the Kalman filter are initialized on each experiment
on a 50% SOC base, with the filter converging to the correct values in the first
5 seconds, as it is possible to see in the leftmost part of the voltage plot. The
zoom shows more detail about the difference in the voltage profile during one of
the pulsing current request, where the input dynamics are quite different from
the constant current discharge dynamics. The bottom plot of Figure 11 shows the
voltage errors of the Kalman filter and the open loop model. The behavior of the
open loop model shows clearly that, even if the error is small, the model is unable
to replicate the real battery output with more than a certain precision, while the
Kalman filter follows closely the experimental data, predicting almost flawlwsly
the voltage during both the low and high dynamic part of the profile.

Figure 12 shows the same signals of Figure 11, at the end of the discharge
process, close to the low observability part of the model. It is possible to see how,
while the EKF shows some errors during the transients (in particular during the
current demand fronts as it is possible to notice in the Figure 12 top plot zoom),
those errors are quickly recovered. In the contrary, the open loop model error is
greater throughout the initial part of the discharge, showed in Figure 11 bottom
plot. While the error magnitude is still below the 0.5 V threshold, it is clear that,
for this particular profile, the voltage output of the open loop model is by far
inaccurate and of no practical interest.

Figure 13 shows the performance of the Kalman filter under noisy input-output
condition. The experiment used is the same HPPC profile showed in Figure 7. It
is possible to see how the Kalman filter rejects the noise present on the measured
battery voltage while still tracking the correct output profile, even in presence of
fast input dynamics. On the contrary, the open loop model is subject to the current
input noise that gives an equally noisy output. While the open loop error is small
compared to the measured battery voltage, there is no filtering action, nor voltage
error recovery similar to the Kalman filter predictions.

Figure 14 shows the charge estimation comparison between the SOC based on
the critical surface solid concentration (CSOC), the bulk solid concentration (i.e.
the whole concentration contained inside the representative spherical particle, or
SOC) and the classic coulomb counting (CC), based on the nominal cell capacity
value. The experiment used is the 6 A pulse discharge profile used above in the
paper. The critical SOC reflects the fast dynamics of the input more than the bulk
SOC, while the coulomb counting predicts just a slow decrease of the SOC, due
to the pulsing current, neglecting the diffusion/intercalation dynamics captured by
the real battery behavior, clearly visible in the cell voltage rising up during the
rest periods due to a rebalancing of the surface concentration (and thus of the
inner concentration with the diffusion process).

Because the voltage and current signal are noisy, it could be difficult to clearly
understand the effective behavior of the concentrations and thus of the calculated
SOC. Hence, Figure 15 shows the SOC behavior calculated using a simulated pulse
discharge profile. The current demand is a 8 A square wave, with 10 s period and
20% duty cycle. Again the same SOC calculation methods are compared. Since
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Figure 13 Detail of the HPPC test experiment. The solid blue line is battery
measured voltage output, the green dashed line is the Kalman filter voltage
output and the red line with the x marker is the open loop model voltage
output. The zoom shows the details of the voltages profile, along with the
noise filtering action of the EKF in comparison with both the real voltage
measurement and the open loop model output.
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Figure 14 SOC estimation comparison during a pulse discharge experiment. The
solid blue line is the EKF critical SOC, the green dotted line is the bulk SOC
while the red dashed line is the SOC obtained using the coulomb counting
method.
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Figure 15 SOC estimation comparison during a simulated pulse discharge
experiment. The solid blue line is the EKF critical SOC, the green dotted line
is the bulk SOC while the red dashed line is the SOC obtained using the
coulomb counting method.

the EKF is always initialized around the 50% value, it is possible to evaluate
how the surface concentration converges quickly to the correct value, while the
bulk concentration (green dotted line) takes longer because it needs the back
propagation effect to reach the inner slices before to converge to the correct
values. Again it is possible to see how the simple coulomb counting method fails
to catch the rebalancing phenomena that are present instead (even if with a
different amplitude) both in the critical and in the bulk SOC estimation. While
the mean value of the SOC is practically equal between the critical SOC and the
coulomb counting method, the main difference is the istantaneous value of the
estimated SOC. The peaks and the valleys in the critical SOC estimation reflect
the istantaneous availability of energy due to the presence of a given concentration
on the surface of the active material and thus the effective istantaneous available
potential at the cell electrodes.

Given a sufficient rest to the cell after a current demand (positive or negative)
the value of all the methods has to be equal again, because this value have to
reflect the effective amount of energy still present into the cell after the insertion or
the extraction. Figure 16 shows the simulation of a 10 s current demand followed
by 90 s of rest. It is possible to see how during the rest the EKF SOC estimation
(both critical and bulk based) converge to the coulomb counting value, due to the
rebalancing of the concentration between the solid and the liquid phase. While this
demonstrates that the SOC estimation method proposed is able to give a correct
indication of the amount of energy present inside the cell, it has to be noted that
the coulomb counting could be used as reference in this case only because the
current profile is simulated. In a real environment, the errors due to the noise on
the current measure along with unmodeled dynamics of the cell will accumulate
making coulomb counting quickly inaccurate. The values estimated by the EKF
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Figure 16 SOC estimation comparison during a 10 s discharge followed by 90 s rest.
The solid blue line is the EKF critical SOC, the green dotted line is the bulk
SOC while the red dashed line is the SOC obtained using the coulomb
counting method.

instead, are always calculated using the voltage feedback in order to estimate the
model output error versus the real cell output. This error injection compensates
for both model error and small parameter changes from the identified ones.

Finally a robustness analysis has been performed on the Kalman filter in order
to verify the robustness of the observer versus variations of the model parameters.
For each one of the model parameters, a number of simulations has been performed
varying the chosen parameters in order to estimate the resulting output variation.
The results of this analysis are listed in Table 3 showing excellent performance in
terms of robustness and reliability with respect to the variation of one or more
model parameters. For brevity the Table 3 shows just the parameters that lead to
a significant SOC estimation variation.

8 Conclusion

An isothermal electrochemical model of the Lithium-ion battery was used to derive
an surrogate model coupling the average microscopic solid material concentration
with the average values of the chemical potentials, electrolyte concentration and
microscopic current density. The surrogate model was identified using experimental
data from a 10 cell battery pack. Finally, the SOC estimation was performed
using an EKF, showing excellent results in term of voltage convergence indicating
good and fast battery SOC estimation and robustness to small battery parameter
variations.
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Name Symbol and Value

Max neg. solid concentration
(mol cm−3) cs,max,n = 3.175× 10−2

Max pos. solid concentration
(mol cm−3) cs,max,p = 2.59× 10−2

Solid phase neg. diffusion coef.
(cm2 s−1) Ds,n = 1.27× 10−12

Solid phase pos. diffusion coef.
(cm2 s−1) Ds,p = 8.09× 10−12

Neg. active surface area
(cm2cm−3) as,n = 9.655× 104

Pos. active surface area
(cm2cm−3) as,p = 2.425× 104

Electrode plate Area
cm2 A = 8000

Total resistance
Ωcm2 Kr = 128
Current density coef. k0 = 1.918× 103

Table 1 Parameters identified.

Parameter Anode Separator Cathode

Thickness (cm) δn = 0.0005 (b) δsep = 0.0002 (a) δp = 0.00364 (b)

Particle radius Rs (cm) 10× 10−4 (a) - 1× 10−4 (a)
Active material volume frac. εs 0.580 (a) - 0.500 (a)
Electrolyte volume frac. εe 0.332 (b) 0.5 (b) 0.330 (b)

Charge transfers coeff. αa, αc 0.5,0.5 (b) - 0.5, 0.5 (b)
Initial stoichiometry x0,y0 0.7 (b) - 0.32 (b)

Table 2 Battery parameters. (a) from battery datasheet, (b) from literature
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Parameter Variation Absolute error mean

csmax,p −20% ē = 1.1× 10−3

−10% ē = 4.76× 10−4

+10% ē = 4.25× 10−4

+20% ē = 8.10× 10−3

csmax,n −20% ē = 2.1× 10−3

−10% ē = 9.44× 10−4

+10% ē = 7.73× 10−4

+20% ē = 1.4× 10−3

Ds,n −20% ē = 7.33× 10−5

−10% ē = 3.54× 10−5

+10% ē = 3.33× 10−5

+20% ē = 6.5× 10−5

as,p −20% ē = 5.58× 10−4

−10% ē = 2.48× 10−4

+10% ē = 2.03× 10−4

+20% ē = 3.72× 10−4

as,n −20% ē = 2.12× 10−3

−10% ē = 9.44× 10−4

+10% ē = 7.73× 10−4

+20% ē = 1.41× 10−3

A −20% ē = 3.57× 10−3

−10% ē = 1.6× 10−3

+10% ē = 1.3× 10−3

+20% ē = 2.39× 10−3

A and as,n −20% ē = 2.15× 10−2

−10% ē = 1.1× 10−2

+10% ē = 1.3× 10−2

+20% ē = 2.87× 10−2

Table 3 Robustness analysis results.
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